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Abstract Motivation: Diseases that progress slowly are often studied by observing cohorts at different stages

of disease for short periods of time. The Alzheimer’s Disease Neuroimaging Initiative (ADNI)

follows elders with various degrees of cognitive impairment, from normal to impaired. The study

includes a rich panel of novel cognitive tests, biomarkers, and brain images collected every 6 months

for as long as 6 years. The relative timing of the observations with respect to disease pathology is

unknown.We propose a general semiparametric model and iterative estimation procedure to estimate

simultaneously the pathological timing and long-term growth curves. The resulting estimates of long-

term progression are fine-tuned using cognitive trajectories derived from the long-term “Personnes

Ag�ees Quid” study.

Results: We demonstrate with simulations that the method can recover long-term disease

trends from short-term observations. The method also estimates temporal ordering of individ-

uals with respect to disease pathology, providing subject-specific prognostic estimates of the

time until onset of symptoms. When the method is applied to ADNI data, the estimated

growth curves are in general agreement with prevailing theories of the Alzheimer’s disease

cascade. Other data sets with common outcome measures can be combined using the proposed

algorithm.

Availability: Software to fit the model and reproduce results with the statistical software R is

available as the grace package. ADNI data can be downloaded from the Laboratory of NeuroImaging.

� 2014 The Alzheimer’s Association. All rights reserved.
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1. Introduction

Several methods exist for estimating smooth progression or

growth curves from serial observations of individuals over

some biologically common time span. For example, general-

ized linear or nonlinear mixed effects models [1] can be used

to model height, weight, or pharmacokinetics over time from

some event of interest. The eventmight be birth or an interven-

tion. However, we often study diseases that occur over long pe-

riods of time by sampling populations at different stages of

yData used in preparation of this article were obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.

usc.edu). As such, the investigators in the ADNI contributed to the design

and implementation of ADNI and/or provided data but did not participate

in the analysis or writing of this article. A complete listing of ADNI

investigators can be found at http://adni.loni.usc.edu/wp-content/upload-

s/how_to_apply/ADNI_Acknowledgement_List.pdf.
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disease and taking short-term longitudinal “snapshots.” Epide-

miologic studies with biologically heterogeneous subpopula-

tions may not have an obvious biological event that can

serve as a reference “time zero.” Such a time zero is required

to fit the standard mixed-effects model. Also, the standard

nonlinear mixed-effects models and software assume similar

features on both the subject and population levels [1–3].

Short-term follow-up with relatively few observations may

require much more simple subject-level features.

A motivating example is Alzheimer’s disease (AD),

which is believed to develop decades before the onset of

symptoms. The Alzheimer’s Disease Neuroimaging Initia-

tive (ADNI) [4], has followed volunteers diagnosed as

cognitively normal (CN), early mild cognitive impairment

(EMCI) and late mild cognitive impairment (LMCI), and

probable mild AD. Maximum follow-up is currently as

long as about 6 years, and data collection is ongoing. The

ADNI battery includes serial magnetic resonance imaging

(MRI) measures of regional brain volumes, positron emis-

sion tomography (PET) measures of brain function and

amyloid accumulation, other biological markers, and clin-

ical and neuropsychological assessments. Time of onset of

dementia, a potential time zero, is recorded for subjects

with or transitioning to dementia, but these times can be un-

reliable and subjective. Furthermore, CN individuals and

individuals with mild cognitive impairment may not be fol-

lowed long enough to observe clinical transitions.

Jack and colleagues [5,6] proposed a long-term model of

the AD pathological cascade, and hypothesized specifically

the trajectory of several key biomarkers during the decades

preceding the onset of dementia symptoms. The model

(Fig. 1) proposes that the AD cascade begins many years

before the onset of symptoms,with amyloid plaque deposition

in the brain followed by neurofibrillary tau tangles; cognitive,

clinical, and functional decline are relatively late features of

the disease. This hypothesized model (Fig. 1) is shaping the

field of AD research. Drug development and observational

studies have shifted focus to earlier stages of the disease, se-

lecting subjects based on biomarkers instead of symptomatic

impairment. Ideally, we would test the hypothesized model of

Fig. 1 by enrolling a large cohort of CN subjects and by col-

lecting biomarkers and cognitive and functional assessment

results for decades. The subset who progress to AD could

be used to model the long-term biomarker progression of

the disease. Until such a study is conducted, we are limited

to analyzing shorter term studies, such as ADNI.

Self-modeling regression (SEMOR) is an approach for

fitting sets of curves under the assumption of a common shape

[7]. A subclass of SEMOR, shape-invariant models [8–11],

accommodate unknown location and scale parameters for

both the outcome and the time covariate, and model the

common shape with regression splines. Kneip and Gasser [7]

relaxed some of the parametric assumptions by using kernel

smoothers to estimate the common shape. Others have

modeled the common shape with free-knot regression splines

[12], smoothing splines [13], and penalized splines [14–16].

To our knowledge, SEMOR has been applied only to data

sets in which each subject has similar follow-up. SEMOR

approaches assume a common shape throughout the popula-

tion, and estimate subject-level curves with similar features

as the population curve. Our goal is to estimate popula-

tion curves for decades of AD progression on an array

of outcome measures; however, subject-level data comprise,

at most, nine observations over 6 years. We propose a

SEMOR model with simple, linear subject-level effects,

while modeling long-term features with nonparametric

monotone smoothing. Subjects are shifted backward or

forward in time according to performance across the panel

of outcomes. Long-term progression curves for the multiple

outcomes, and subject-specific random effects and time

shifts are estimated iteratively until convergence of the resid-

ual sum of squares (RSS).

There have been studies of AD progression with long-

term follow-up, but these tend to lack the novel biomarkers

Fig. 1. Dynamic biomarkers of the Alzheimer’s disease cascade hypothesized by Jack and colleagues [5]. Ab, amyloid b; MCI, mild cognitive impairment.
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of prime interest in early stages of the disease. For instance,

the “Personnes Ag�ees Quid” (PAQUID) study has followed

3777 French individuals age 65 years or older studied from

1988 until the present [17]. The PAQUID data set lacks the

imaging and cerebrospinal fluid (CSF) biomarkers that

ADNI collected, but provides invaluable long-term Mini-

Mental State Examination (MMSE) trajectories [18]. We

can use these trajectories to fine-tune the results of the algo-

rithm applied to ADNI data, and transform time to represent

time to dementia onset.

2. Model assumptions

We assume several outcomes Yij arise during time t for in-

dividual i5 1, . . . , n and outcome j5 1, . . . ,m according to

YijðtÞ5gjðt1giÞ1a0ij1a1ijt1εijðtÞ: (1)

Furthermore, we assume each gj is a continuously differ-

entiablemonotone function,gi’s havemean zero and variance

s2g, ða0ij;a1ijÞ are bivariate Gaussian with mean zero and

covariance matrix
P

j, and εij (t)’s are independent Gaussian

residual errors withmean zero and outcome-specific variance

sj. To simplify notation, we think of t as both a covariate and

a continuous valued index. “Short-term” observation time

is represented by observed covariate t. In a panel study such

as ADNI, t would correspond to the study time clock.

“Long-term” progression time is represented by t1 gi, where

gi is the unknown subject-specific time shift. If subjects age

uniformly, with identical ages at different stages of progres-

sion of the underlying disease features, “long-term” progres-

sion timewould be the subjects’ age; in fact, however, disease

manifests at different ages, so this corresponds to an unknown

“health age,” which may be shifted left or right relative to

actual age.

Fig. 2A depicts simulated data generated according

to equation (1). The logistic function g1ðtÞ5
1

11expð2tÞ ;

the linear function g2ðtÞ5
t

1210:5
; and the quadratic

g3ðtÞ5
ðt16Þ2

72
generated the three outcomes. For each of the

100 subjects, we sampled subject-specific time shifts, g0,

uniformly from the interval –5 to 5. The unshifted observa-

tion times were t5 –1, –0.5, 0, 0.5, 1. The random intercepts

and slopes for each subject and outcome are distributed

according to a bivariate Gaussian with mean zero, variance

0.01, and covariance 0.005. The residual variance is

also Gaussian with variance 0.01. We chose the different

long-term shapes to test whether our semiparametric method

could recover them without supervision. The observation

times and long-term scatter were chosen to mimic ADNI

roughly. The variance parameters were chosen so that the

long-term trends were reasonably apparent by visual inspec-

tion of Fig. 2A

The long-term trends are obvious in Fig. 2A because the

data are plotted with the simulated time shifts. However, the

time shifts are not observed in data such as ADNI’s. Rather,

the data are observed as in Fig. 2B. The goal of the algorithm

proposed in the next section is to estimate both the time shift

parameters and the long-term curves. The algorithm will

leverage the assumption that the long-term trends are mono-

tone, and will pool information across outcomes to estimate

the subject-specific time shifts.

The restriction that gi, a0ij, and a1ij each have mean zero,

helps ensure identifiability (i.e., that the parameters of the

model are uniquely determined). Without the random slope

term a1ij, our model is a simplification of the classical shape

invariant model (SIM) for each outcome. The SIM includes

two rescaling parameters and two shift parameters. Our

model excludes the SIM rescaling parameters but includes

an additional random slope term. Without the random slope

term, identifiability of our model is established in Kneip and

Gasser [7] under the normalizing condition that shift param-

eters gi and a0ij have mean zero, which we maintain. To

ensure identifiability in our model with a random slope,

a1ij, we simply require the additional restriction that the

mean of a1ij is zero. Following Kneip and Gasser [7], the re-

strictions on the mean of gi, a0ij, and a1ij, and the assumption

that gj is a continuously differentiable monotone function for

each outcome, ensure identifiability.

3. The algorithm

The algorithm reduces the highly dimensional and com-

plex problem into simpler problems. Each of the unknown

parameters (gj, gi, and a) is estimated in turn using the

current estimates of the other parameters. This process is

iterated until convergence of the RSS. The algorithm uses

three different types of partial residuals, using the language

of generalized additive model estimation [19], which we

denote R
g
ijðtÞ;R

a
ijðtÞ;R

g
ijðtÞ(Table 1). If we assume that model

(1) is correct, then each of the partial residuals provides

an unbiased estimate of one of the unknown parameters.

Specifically, conditional expectations of the partial residuals

are equivalent, or at least approximately equivalent, to the

target parameters (Table 1).

We begin the algorithm by initializing gi 5 0 and iter-

ating the following.

1. Given gi, estimate the monotone functions gj by

setting a0ij 5 a1ij 5 0 and iterating the following

subroutine.

(a) Estimate gj by a monotone smooth of R
g
ijðtÞ:

(b) Estimate a0ij, a1ij by the linear mixed model of

Ra
ijðtÞ:Repeat steps a and b until convergence of

the RSS for the jth outcome: RSSj5
P

it½YijðtÞ2
gjðt1giÞ2a0ij2a1ijt�

2
:

2. Given current set of gj, set a0ij5 a1ij5 εij (t)5 0, and

estimate each gi with the average of R
g
ijðtÞ over all j

and t. Repeat steps 1 and 2 until convergence of the

total RRS equals Sijt½YijðtÞ2gjðt1giÞ2a0ij2a1ijt�
2
:

Step 1 involvesm parallel subroutines for fitting gj and the

subject-specific a0ij and a1ij for each outcome j5 1, . . . , m.

We begin each of the m parallel subroutines by setting

M.C. Donohue et al. / Alzheimer’s & Dementia 10 (2014) S400–S410S402



Fig. 2. (A)Simulated long-termdata.The threemonotone functions depicted inbold are logistic, linear, and quadratic.Long-term trends are easily apparent because

data are plotted with the unknown time shifts. The simulated data are not derived from real data and are intended for demonstration only. (B) Simulated short-term

observations. Long-term trends are obscured becausewe observe the data in the short term, without the unknown time shifts. (C) Long-term curves estimated from

short-term observations. The algorithm described in section 3 estimates long-term curves (red line), with good fidelity to the true target curves (dashed green line).

(D) Fitted curves from 1000 simulations.We repeated the experiment, generating new data and fitting the curves 1000 times, then plotted the fitted curves in black.
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a0ij 5 0 and a1ij 5 0. To estimate gj, we use a mono-

tone B-spline smoother [20] through the scatterplot of

½t1gi;R
g
ijðtÞ�: This is accomplished using the R package fda

[21]. Using the model, R
g
ijðtÞ is distributed independently

and identically about gj (t), so we need not model within-

subject correlations at this step. To estimate a0ij and a1ij,

we minimize Ra
ijðtÞ by fitting a linear mixed-effect model

of Ra
ijðtÞ5a0ij1a1ijt1εijðtÞ using lme4 [22]. Steps a and b

are repeated with the same gi until convergence of RSSj.

The result is m smooth curves, g1, . . . , gm, and m! n sets

of random effects estimates for them outcomes and n individ-

uals. Plots of the fits and residuals at each iteration are pro-

duced with ggplot2 [23].

In step 2, we invert the outcome variables and estimate

the time shift parameters gi by taking the average of

R
g
ijðtÞ over all outcomes and times for each individual.

This is the only step that pools data derived from all out-

comes at once. To down-weight the influence of more

variable outcomes, one could use a weighted average

with weights inversely proportional to each outcome’s re-

sidual variance.

4. Simulations

Data simulated as described in Section 2 are depicted in

Fig. 2. We submitted these data to the algorithm. Each curve

was estimated with the same monotone B-spline smoother

with five equally spaced knots and fifth-degree polynomial

splines. The resulting fitted curves are shown to have good

fidelity with the true logistic, linear, and quadratic curves

(Fig. 2C).

We also plotted the true simulated time shifts against the

estimated time shifts (not shown). The agreement was not

perfect, but, as hoped, the regression line through this scat-

terplot lies close to the identity line. The RSS for each of

the outcomes converged in 10 iterations to a tolerance of

0.1% of the RSS. Code to reproduce the results and an ani-

mation demonstrating convergence is available [24].

5. ADNI and PAQUID results

Fig. 3 shows longitudinal plots of some of the key variables

that have been collected during the course of ADNI. Amyloid

plaque accumulation in the brain is associated with decreased

CSF and increased Pittsburgh compound B (PiB) and florbe-

tapir uptake on PET. Fig. 3 also includes CSF tau and phos-

phorylated tau (p-tau); FreeSurfer volumetric MRI data for

hippocampal, whole-brain, and ventricular volume; fluoro-

deoxyglucose uptake on PET; the 13 item Alzheimer’s Dis-

ease Assessment Scale–Cognitive Subscale (ADAS13)

including delayed word recall and number cancellation tasks;

the MMSE; the Alzheimer’s Disease Cooperative Study

Functional Activities Questionnaire; the Rey Auditory Visual

LearningTest, and the Clinical Dementia Rating Scale Sumof

Boxes (CDRSB). CSFmeasures were collected only on a sub-

set of ADNI volunteers, as evidenced by the relative sparsity

of CSF data. Florbetapir PET imaging and the EMCI cohort

were added relatively late in the study. Additional details on

these measures in ADNI are available [4].

One of the primary motivations for this work was to

derive a data-driven version of the progression curves

hypothesized by Jack and colleagues [5]. The hypothesized

figure (Fig. 1) shows the key markers of disease progressing

on a common vertical scale from normal to abnormal, with

clinical disease stage on the horizontal scale. The percentile

scale is a natural choice to attain a common scale. Therefore,

before submitting ADNI measures to our algorithm, we first

transformed them to a percentile scale. Because the diag-

nostic groups are not represented equally, we use a weighted

percentile transformation. The resulting scale is percentile

normalized to range from 0 (least severe observed value)

to 100 (most severe observed value). Percentiles were calcu-

lated using the empirical cumulative distribution function,

derived by weighting according to the inverse of the propor-

tion of observations from each diagnostic category (CN,

EMCI, LMCI, and AD). Table 2 provides counts of subjects

and observations by baseline diagnostic category. For

example, we observed N=7216 MMSE scores across all

diagnostic groups and time points. Among those N57216

MMSE observations, N52094 (29.0%) were from CN,

N5979 (13.6%) were from EMCI, N53074 (42.6%) were

from LMCI, N51069 (14.8%) were fromAD. Because diag-

nostic groups are not represented equally, we used the in-

verse proportions as weights when computing the

empirical cumulative distribution function. Table 3 provides

the raw values that correspond to the resulting percentiles.

Table 1

Partial residuals for each target parameter and their conditional expectations

Partial residual Conditional expectation

Long-term smooth curve: gj
R
g
ijðtÞ5YijðtÞ2a0ij2a1ijt EðRg

ijðtÞ
�

�gj; t;giÞ5gjðt1giÞ
Subject- and outcome-specific intercept and slope: a0ij, a1ij
Ra
ijðtÞ5YijðtÞ2gjðt1giÞ EðRa

ijðtÞ
�

�a0ij;a1ij; tÞ5a0ij1a1ijt

Subject-specific time shift: gi
R
g
ijðtÞ5t2g21

j ðYijðtÞÞ EðRg
ijðtÞ

�

�giÞzg21
j ðgjðt1giÞÞ2t5gi

NOTE. The algorithm estimates each target parameter of our model via the partial residuals defined here. Under the assumptions of the model, we see that the

conditional expectations of the partial residuals are equivalent to the parameters of interest. The equivalence is approximate for EðRg
ijðtÞ

�

�giÞ; because here we
integrate over the function g21

j . The approximation is reasonable provided a0ij, a1ij, and εij are small and g21
j is not too steep.
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ADNI includes many CN subjects, individuals with mild

cognitive impairment, and even misdiagnosed probable AD

subjects who may not have AD pathology. This is because

physicians do not have access to biomarker results at the

time of diagnosis. These subjects do not provide any informa-

tion about the long-term trends of AD. Therefore, we applied

our algorithm to the subset 388 ADNI participants with some

evidence of abnormal accumulation of amyloid in the brain

(amyloid1) using published thresholds for CSF amyloid-b

(Ab; 192 pg/mL), PiB PET (1.5 standardized uptakevalue ra-

tio in the region relative to the cerebellum), and florbetapir

PET (1.1 standardized uptake value ratio in the region rela-

tive to the cerebellum) [25–27]. The group consisted of 100

CN subjects, 137 individuals with EMCI, 225 individuals

with LMCI, and 117 individuals with AD, but the

algorithm was blind to these diagnostic categorizations.

Using the same approach as the simulation, the B-spline

smooths were fitted with five equally spaced knots and

fifth-degree polynomial splines.

Fig. 4A top, shows the estimated long-term trajectories

among amyloid1 ADNI subjects. Time has been shifted so

that time zero represents the time at which the mean CDRSB

score reaches the 80th percentile. The resulting timescale can

be interpreted as time until progression to the worst 20th

percentile of CDRSB. To reduce clutter and because it was

very similar to the ADAS13 trajectory, CDRSB is not shown

Fig. 3. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) battery consists of a rich panel of biomarkers and assessments collected at 6-month intervals for

as long as 6 years. Subjects began the study as one of four diagnostic categories. The early mild cognitive impairment (EMCI) cohort was enrolled relatively

recently, so there is relatively less data from that cohort. Cerebrospinal fluid (CSF) measures are not collected from every ADNI volunteer. Some measures,

such as florbetapir positron emission tomography (PET), have not been collected for as long. There is no obvious biological or clinical reference time point.

The x-axis is time since the first ADNI visit. CSF measures are in pg/mL, PET measures are standardized uptake value ratios, and hippocampus and ventricles

are percent intracranial volumes. Ab, amyloid-b; p-tau, phosphorylated tau; PiB, Pittsburgh compound B; FDG, fluorodeoxyglucose; ADAS13, the 13 item Alz-

heimer’s Disease Assessment Scale–Cognitive Subscale; MMSE, Mini-Mental State Examination; FAQ, Alzheimer’s Disease Cooperative Study Functional Ac-

tivities Questionnaire; RAVLT, Rey Auditory Visual Learning Test; CN, cognitively normal; LMCI, late mild cognitive impairment; AD, Alzheimer’s disease.
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in the middle panel of Fig. 4A. We also omit ventricular vol-

ume, which tracks closely with the hippocampus. Fig. 4A,

bottom left, depicts the first derivatives of each curve divided

by the standard deviation of its residuals. The shaded regions

in the top panels of Fig. 4 depict bootstrap estimates of the

confidence bands. We resampled the subjects with replace-

ment and reapplied the algorithm 100 times. Each resampled

population contained the same number of subjects as the

observed population. For each time point, we then took the

2.5 percentile and the 97.5 percentile of the 100 curves as

the lower and upper limits.

We also applied the algorithm to the subset of 570 ADNI

participants who had at least one apolipoprotein E (APOE)

ε4 allele (Fig. 4). This subgroup consisted of 92 CN subjects,

85 individuals with EMCI, 248 individuals with LMCI, and

145 individuals with AD, but again the algorithm was blind

to the diagnoses. Note that this group contains many subjects

who would be classified as amyloid–. Using MMSE trajec-

tories from the PAQUID study, we applied a postprocessing

step to transform time. The PAQUID timescale is time to

onset of dementia. The ADNI timescale, with estimated

subject-specific time shifts, lacks a pathological anchor. To

transform the ADNI timescale to the PAQUID time to onset,

we composed the ADNI MMSE trajectory with the inverse

PAQUID trajectory. That is, if f denotes the estimated

MMSE curve from ADNI and g denotes the same from

PAQUID, with inverse g
21, we transform ADNI time, t,

via the composition g21[f (t)]. Because PAQUID lacks mea-

sures of amyloid burden, we could not do this transformation

with our amyloid1 analysis.

For comparison, Fig. 5 depicts trajectories estimated

from those without evidence of amyloid burden and those

without an APOE ε4 allele. We used the same transforma-

tions of time as described earlier, in particular using

estimated trajectories from PAQUID to calibrate the ADNI

timescale. The amyloid– group consisted of 190 CN sub-

jects, 153 individuals with EMCI, 92 individuals with

LMCI, and 13 individuals with AD. The APOE ε4

allele noncarrier group consisted of 263 CN subjects, 124

individuals with EMCI, 219 individuals with LMCI, and

75 individuals with AD.

6. Discussion

Bateman and colleagues [28] recently produced esti-

mated progression curves for a 50-year span using data

from the Dominantly Inherited Alzheimer’s Network. A

key feature of autosomal dominant AD is that the age of

onset of symptoms is expected to be close to the age of onset

of the parent. Bateman and colleagues [28] use the parents’

ages of onset to estimate long-term disease progression

from cross-sectional data from mutation carriers spanning

25 years before, to 10 years after, the parents’ age of onset.

In contrast, we have less confidence about the age of onset

in the ADNI population of sporadic AD. Our SEMOR

approach addresses this limitation of ADNI by estimating

age of onset and the progression curves simultaneously.

Simulations suggest that our iterative algorithm can

recover reasonable estimates of the long-term trajectories

from short-term observations. Nonparametric estimation of

themonotone curves allows different-shape curves to emerge

without prespecifying parametric families. Additional simu-

lation studies and analytical development of asymptotic

convergence is warranted. Convergence of estimates of the

time shifts will rely in part on the abundance of outcomes.

With only three outcomes used in the simulation, the algo-

rithm estimated the time shifts surprisingly well.

Jack and colleagues [5,6] proposed that all disease

markers range from zero (absolutely normal) to one

(absolutely abnormal) and follow sigmoidal shapes. Rather

than assuming this to be true, and using a parametric

approach, we opted to follow a nonparametric monotone

Table 2

Counts of subjects and observations by baseline diagnosis

Outcome CN, n/N* EMCI, n/N* LMCI, n/N* AD, n/N* Total

CSF tau, pg/mL 36/132 54/211 16/63 106/406

CSF p-tau, pg/mL 36/132 54/211 16/63 106/406

CSF amyloid-b, pg/mL 36/132 54/211 16/63 106/406

PiB PET, SUVR 19/49 65/141 19/34 103/224

Florbetapir PET, SUVR 270/270 290/290 252/252 98/98 910/910

FDG PET uptake 345/763 299/346 409/1263 208/434 1261/2806

Ventricles, % ICV 413/1448 298/852 548/1927 267/637 1526/4864

Hippocampus, % ICV 413/1448 298/852 548/1927 267/637 1526/4864

ADAS13 418/1883 305/825 560/2735 309/871 1592/6314

MMSE 608/2094 450/979 864/3074 474/1069 2396/7216

FAQ 416/1891 304/823 560/2781 310/907 1590/6402

RAVLT 419/1893 306/825 560/2739 312/884 1597/6341

Abbreviations: CN, cognitively normal; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; AD, Alzheimer’s disease; CSF,

cerebrospinal fluid; p-tau, phosphorylated tau; PiB, Pittsburgh compound B; PET, positron emission tomography; SUVR, standardized uptake value ratio;

FDG, fluorodeoxyglucose; ICV, intracranial volume; ADAS13, the 13-item Alzheimer’s Disease Assessment Scale–Cognitive Subscale; MMSE, Mini-

Mental State Examination; FAQ, Alzheimer’s Disease Cooperative Study Functional Activities Questionnaire; RAVLT, Rey Auditory Visual Learning Test.

NOTE. The number of subjects and observations available in the ADNI data set varies by outcome.

*Total number of subjects (n) and observations (N).
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smoothing approach. We chose to apply our algorithm

to relatively pathologically homogenous amyloid1 and

APOE ε41 subsets. Although restricting to amyloid1 is

ostensibly assuming that amyloid is the precursor to the

AD cascade, we feel that including many subjects with a

low likelihood of AD pathology may lead to distorted

trajectories. The APOE ε4 allele is the major genetic risk

factor for sporadic AD, although roughly one-third of indi-

viduals with AD do not carry it.

Our nonparametric approach does not assume sigmoidal

curves, but rather a very flexible class of monotone curves.

Surprisingly, among amyloid1 subjects, we found mean

CSF Ab follows a linear trajectory, whereas tau, p-tau, and

PiB PET follow sigmoidal shapes. However, the sigmoidal

shapes are flatter than those proposed by Jack and colleagues

[5] and remain within the 40th to 80th percentile range.

Glucose metabolism (fluorodeoxyglucose PET), hippocam-

pal volume, ventricular volume, learning, and cognition

(ADAS13) all track very close to each other in near-linear tra-

jectories. Function (Alzheimer’s Disease Cooperative Study

Functional Activities Questionnaire) was the final domain to

fail following a parabolic trajectory. It is quite possible that

ADNI does not have enough data from later stage dementia,

which might demonstrate the final plateau of a sigmoid.

The relative paucity of available observations at the most se-

vere stage of disease is a limitation that will be addressed as

the model is expanded to include additional data sets.

The question of which markers become abnormal first is

distinct from the question of which markers can be estimated

efficiently in terms of the signal-to-noise ratio. To explore the

latter question, we provide plots of the first derivatives of

curves divided by the residual standard deviation. Hippocam-

pal volume appears to dominate the other measures across the

15-year span in both analyses, with the possible exception of

CSFmarkers. The CSFmarkers show some areas of relatively

high standardized slopes, but these could be a result of scant

data and spurious acceleration near the boundaries of observa-

tion (Fig. 5, bottom). In other cases, the CSF measures are

relatively flat, which may cause spurious acceleration de-

picted in the bell shapes (Fig. 4A, bottom).

Our approach also does not assume that the mean should

attain zero and one. Without this assumption, our algorithm

demonstrates much pathological heterogeneity or measure-

ment variability, even in the selected amyloid1 subset.

For instance, 15 years before reaching the worst 20th

percentile of CDRSB, CSF Ab ranges between zero and

the 80th percentile, with a mean at about the 20th

percentile. Between-subject variability tends to flatten the

mean trajectory, such that most estimated trajectories

in Fig. 4A do not cover the full range from zero to one.

A model which forces the mean value to attain zero may

mask the heterogeneity of some markers over the course

of the disease.

Perhaps some of the heterogeneity can be explained

by diet, lifestyle, education, occupation, or other covariates

related to cognitive reserve. Genetics or family history

might also explain heterogeneity. We plan to investigate

these hypotheses in the future by building covariates into

the model, but more data on the earliest phases of the dis-

ease are necessary. Fortunately, the mixed-model frame-

work we have adopted is well suited to pooling data sets

for meta-analyses. Hierarchical random effects can be

used to model within-study and within-subject correlation.

Meta-analyses may also help address a key limitation of

the ADNI data, which is that the age range of ADNI partic-

ipants is restricted to 55 to 95 years at baseline. In fact,

across our 15-year span of estimated long-term progression,

the mean age of subjects represented remains in the 70- to

75-year range. Clearly, we need to incorporate data from

younger cohorts.

The comparison groups depicted in Fig. 5 are difficult to

interpret. Note that only 13 of 130 subjects with AD (10%)

with known amyloid status are classified as amyloid–, and 75

of 220 subjects with AD (34%) have no APOE ε4 allele.

Also, many of the subjects with mild or no impairment

entered into this analysis may never progress. However,

we might interpret the amyloid– trajectories as a

Table 3

Percentiles of key ADNI outcomes

Percentiles

Outcome n/N* 0 25th 50th 75th 100th

CSF tau, pg/mL 106/406 31 64 90 122 379

CSF p-tau, pg/mL 106/406 10.0 21.6 32.3 42.0 82.0

CSF amyloid-b,

pg/mL

106/406 364 181 146 131 98

PiB PET, SUVR 103/224 1.09 1.36 1.85 2.09 2.93

Florbetapir PET,

SUVR

910/910 0.83 1.01 1.21 1.41 2.01

FDG PET uptake 1261/2806 8.54 6.56 6.06 5.50 3.20

Ventricles, % ICV 1526/4864 0.45 1.67 2.44 3.40 9.03

Hippocampus,

% ICV

1526/4864 0.79 0.50 0.43 0.36 0.20

ADAS13 1592/6314 0.00 9.23 15.91 26.26 85.00

MMSE 2396/7216 30.0 29.2 27.5 24.4 0.0

FAQ 1590/6402 0.00 0.73 4.04 12.87 30.00

RAVLT (Trial

5–Trial 1)

1597/6341 14.00 6.37 4.08 2.18 25.00

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative;

CN, cognitively normal; EMCI, early mild cognitive impairment; LMCI,

late mild cognitive impairment; AD, Alzheimer’s disease; CSF, cerebrospi-

nal fluid; p-tau, phosphorylated tau; PiB, Pittsburgh compound B; PET,

positron emission tomography; SUVR, standardized uptake value ratio;

FDG, fluorodeoxyglucose; ICV, intracranial volume; ADAS13, the 13-

item Alzheimer’s Disease Assessment Scale–Cognitive Subscale; MMSE,

Mini-Mental State Examination; FAQ, Alzheimer’s Disease Cooperative

Study Functional Activities Questionnaire; RAVLT, Rey Auditory Visual

Learning Test.

NOTE. Each of the ADNI outcomes was transformed to a common

percentile scale. Percentiles were calculated using the empirical cumulative

distribution function weighted according to the inverse of the proportion of

observations from each diagnostic category (CN, EMCI, LMCI, and AD).

Increasing percentile scores are intended to be associated with worsening

of the disease. Here we provide the raw values associated with the given

percentile values.

*Total number of subjects (n) and observations (N).
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representation of non-AD pathology, which is marked by a

divergent biomarker signature, including normal CSF levels

and less pronounced hippocampal atrophy and ventricular

expansion. In contrast, the APOE ε4 noncarrier group ap-

pears to converge toward the APOE ε4 carrier group as

symptoms progress. This apparent convergence is possibly

a result of the concatenation of subjects without AD pathol-

ogy antecedent to those with AD pathology, rather than a

true acceleration of pathology in APOE ε4 noncarriers.

Our analysis suggests that amyloid PET imaging with

florbetapir or PiB may reach abnormal levels first, followed

by CSF tau and p-tau. This is consistent with the view that

PET imaging is the most direct measure of amyloid accumu-

lation in the brain (generally considered to be the inciting

Fig. 4. (A) Alzheimer’s Disease Neuroimaging Initiative (ADNI) amyloid1 subjects. ADNI apolipoprotein E (APOE) ε4 allele carriers. The top panels show

each of the mean trajectories superimposed over the subject-level observations from 579 amyloid1 and 570 APOE ε4 individuals, colored by diagnosis. Colors

in the top panel represent diagnosis at ADNI baseline— cognitively normal (CN) in dark blue, early mild cognitive impairment (EMCI) in light blue, late mild

cognitive impairment (LMCI) in light red, and Alzheimer’s disease (AD) in dark red. Shaded gray regions, where visible in the top panels, represent bootstrap

95% confidence bands. The middle panels show all the trajectories at once. On the left, time has been shifted so that time zero represents the time at which mean

Clinical Dementia Rating Scale Sum of Boxes (CDRSB) trajectory (not shown) meets the 80th percentile. On the right, time has been adjusted using long-term

“Personnes Ag�ees Quid” (PAQUID) Mini-Mental State Examination trajectories so that time zero represents the estimated time to onset of dementia. The bot-

tom panels show rates of change standardized by residual standard deviation (SD). CSF, cerebrospinal fluid; Ab, amyloid-b; p-tau, phosphorylated tau; PiB,

Pittsburgh compound B; PET, positron emission tomography; FDG, fluorodeoxyglucose; ADAS13, the 13-item Alzheimer’s Disease Assessment Scale–Cogni-

tive Subscale; MMSE, Mini-Mental State Examination; FAQ, Alzheimer’s Disease Cooperative Study Functional Activities Questionnaire; RAVLT, Rey Audi-

tory Visual Learning Test; CN, cognitively normal; LMCI, late mild cognitive impairment; AD, Alzheimer’s disease.
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event in AD), and suggests a delay before abnormalities are

observed in “downstream” markers of neurodegeneration in

the CSF. Learning, glucose metabolism, hippocampal atro-

phy, and cognition all follow in close succession. Function

is the last domain to progress to abnormality, as expected.

Plots of the adjusted slopes indicate that hippocampal vol-

ume assessed by structural MRI provides the most efficient

measure of disease progression across the full span. These

observations are consistent with our current understanding

of the disease and paint a picture in general agreement

with the model [5]. Our approach will facilitate analyses us-

ing diverse data sets with overlapping measures, providing a

framework for validating models of disease progression.

Last, our framework provides an approach to assessing

the growing body of outcome data, providing quantitative

data to inform still-hypothetical biomarker models. As noted

in an editorial accompanying the revised model [6,29],

biomarker modeling will be facilitated by ongoing accrual

of data that reduces the gaps in our observations; this

applies to both hypothetical and data-driven efforts.
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